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Abstract 

Snow cover over land has a significant impact on the surface radiation budget, turbulent 

energy fluxes to the atmosphere, and local hydrological fluxes.  For this reason, 

inaccuracies in the representation of snow covered area (SCA) within a land surface 

model (LSM) can lead to substantial errors in both offline and coupled simulations.  Data 

assimilation algorithms have the potential to address this problem.  However, the 

assimilation of SCA observations is complicated by an information deficit in the 

observation—SCA indicates only the presence or absence of snow, and not snow 

volume—and by the fact that assimilated SCA observations can introduce inconsistencies 

with atmospheric forcing data, leading to non-physical artifacts in the local water 

balance.  In this paper we present a novel assimilation algorithm that introduces MODIS 

SCA observations to the Noah LSM in global, uncoupled simulations.  The algorithm 

utilizes observations from up to 72 hours ahead of the model simulation in order to 

correct against emerging errors in the simulation of snow cover while preserving the local 

hydrologic balance.  This is accomplished by using future snow observations to adjust air 

temperature and, when necessary, precipitation within the LSM.  In global, offline 

integrations, this new assimilation algorithm provided improved simulation of SCA and 

snow water equivalent relative to open loop integrations and integrations that used an 

earlier SCA assimilation algorithm.  These improvements, in turn, influenced the 

simulation of surface water and energy fluxes both during the snow season and, in some 

regions, on into the following spring.   
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1. Introduction 

Average monthly snow cover in the Northern Hemisphere varies from 7% of all land area 

to more than 40%, making snow cover the fastest varying large-scale surface feature on 

Earth (Chang et al. 1990; Hall 1988).  This variability has a dramatic impact on surface 

moisture and energy fluxes.  Snow insulates the ground beneath, moderating soil 

temperatures during winter (Decker et al. 2003).  Due to its high albedo, snow 

significantly reduces the absorption of radiation at the land surface, restraining turbulent 

energy fluxes and lowering near-surface air temperature (Baker et al. 1992; Liston 2004).  

In high latitude and high altitude regions, snow plays a dominant role in the local and 

regional hydrologic balance, with associated impacts on soil moisture, aquifer recharge, 

and vegetation growth (Flerchinger et al. 1994; Marsh 1999; Ren et al. 2007).  Moreover, 

it is now understood that snow’s influence on local energy fluxes has remote impacts, 

modifying atmospheric temperature and circulations on the regional scale (Elguindi et al. 

2005; Ellis and Leathers 1999; Zaitchik et al. 2007)  and climate dynamics on the 

continental to hemispheric scale (Bamzai and Shukla 1999; Cohen and Entekhabi 2001; 

Dery et al. 2005).  

 

Given these significant effects, it is critical that models used in seasonal forecasts and 

retrospective climate studies accurately simulate the snow pack.  For this reason, most 

modern land surface models (LSMs) include sophisticated snow routines designed to 

capture the accumulation, aging and melt of snow under a range of weather conditions 

(Ek et al. 2003; Roesch et al. 2001; Stieglitz et al. 2001; Takata et al. 2003).  

Unfortunately, even the most refined LSMs have difficulty capturing these processes over 
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an extended simulation (Foster et al. 1996; Pitman 2003).  In a sense, snow is an 

inherently difficult quantity to model: for large areas of the planet, accumulation and melt 

processes are sensitive to small changes in air temperature, radiation fluxes, or surface 

properties, yet the presence versus absence of snow will itself have a dramatic impact on 

these variables.  This means that small uncertainties in parameterization or forcing data 

can trigger errors in snow cover that quickly cascade into larger inaccuracies in albedo, 

soil moisture, energy exchange, and atmospheric conditions.  As these inaccuracies 

compound, the model “drifts,” leading to severe reductions in skill on the seasonal 

timescale.  For hydrologic applications, drift with respect to snow simulation is an even 

larger problem; in many regions, accurate simulation of the depth of the snow pack and 

timing of snow melt are the most important aspects of hydrological monitoring and 

prediction systems. 

 

The MODerate Imaging Spectrometer (MODIS) instruments, on NASA’s Terra and 

Aqua satellites, offer twice daily observations of snow covered area (SCA) at 500m 

resolution, with near-global coverage (Hall et al. 2002).  The reliability of these 

observations is much greater than that of LSM predictions at a similar resolution, but the 

information contained in a MODIS observation is much less.  The LSM simulation of the 

snow pack includes information on snow water equivalent (SWE), snow depth, and, in 

some models, time-variable snow density.  The simulation is also continuous in space and 

time, at a user-specified resolution.  MODIS contains no information on SWE or snow 

depth, can provide a maximum of two daylight observations per day, and frequently 

suffers from data gaps due to cloud cover.  As the MODIS SCA product is derived from 
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information in the visible and near infrared portions of the electromagnetic spectrum, 

observations can only be obtained under clear-sky, daytime conditions.   

 

Data assimilation (DA) algorithms attempt to utilize the information in such 

discontinuous observations by integrating them into a numerical model.  The model 

provides spatial and temporal continuity as well as physically-based schemes that allow 

an observation of one quantity to inform predictions of other modeled variables.  The 

observation system provides reliable, independent information on a variable that the 

model simulates imperfectly, preventing model drift and improving the accuracy of the 

simulation.  Our hypothesis is that data assimilation is the most effective method for 

utilizing MODIS-derived measurements of snow cover in studies of climate and 

hydrology.  Further, as LSMs are frequently employed in a coupled mode with 

atmospheric models, a MODIS SCA assimilation system can be used to improve the 

initialization of numerical forecasts, a powerful predictive application of MODIS-derived 

information.   

 

In this study, MODIS observations of SCA were assimilated into the Noah LSM (Chen et 

al. 1996; Ek et al. 2003) in global, retrospective simulations at 0.25˚ resolution.  

Simulations were performed for two northern hemisphere snow seasons, September 2005 

– June 2006 and September 2006 - June 2007.  The results of two assimilation algorithms 

are presented.  The first, a rule-based direct insertion scheme, is a refinement of a system 

first presented by Rodell and Houser (2004) [hereafter, RH04].  In this algorithm, 

MODIS SCA observations are assigned a SWE equivalent on the basis of land cover, and 
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this value is used to overwrite simulated SWE whenever there is a contradiction between 

model and observation.  The second algorithm is a novel, physically-based assimilation 

update that uses MODIS SCA observations from up to 72 hours ahead of the simulation 

to adjust snow accumulation and melt processes.  This allows for smooth updates of snow 

that attempt to preserve the local hydrologic balance while preventing unrealistic 

add/melt and remove/accumulate cycles that occur in standard snow assimilation schemes 

whenever observations are in conflict with atmospheric forcing data.   

 

The remainder of the paper is structured as follows.  Section 2 provides background on 

the Noah LSM, satellite-derived snow observations, and data assimilation.  Section 3 

gives details of image processing, validation data, and the assimilation scheme.  

Simulation results and evaluation are presented in Section 4.  Section 5 contains 

conclusions. 

 

2. Background 

(a) Noah LSM 

The Noah land surface model is an advanced 1-D column model that simulates soil 

temperature, skin temperature, soil moisture (frozen and liquid, in four soil layers), snow 

states, surface energy and hydrologic fluxes, and subsurface runoff (Chen et al. 1996).  

The model is currently supported by the National Centers for Environmental Prediction 

(NCEP) and is in active development (e.g.,Ek et al. 2003).  It is widely used in 

operational and research applications, and can be run in either coupled or uncoupled 

mode.  Noah employs finite-difference spatial discretization methods and a Crank-
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Nicholson time-integration scheme to solve the governing equations of the physical 

processes of the soil-vegetation-snowpack medium.   

 

Noah contains a one layer snow model that simulates snow water equivalent (SWE) as 

the residual of snowfall – (snowmelt + sublimation).  Snowfall occurs whenever there is 

non-zero precipitation and air temperature is ≤ 0˚C.  Melt occurs whenever there is net 

available energy within the snowpack.  When melt occurs, some water is stored within 

the snowpack and excess water is removed as runoff.  Snow covered area is diagnosed as 

a function of SWE using a generalized snow depletion curve: 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
−−=

==

0.1,expexp1min
0.10.1

ττ

SCASCA SWE
SWE

SWE
SWESCA  (Eq. 1) 

 

Where τ is the snow distribution shape parameter (currently set to 4.0) and 0.1=SCASWE is a 

land cover specific parameter that defines the minimum SWE required for full snow 

cover.  Snow depth is solved on the basis of SWE and snow density.  Snow density is 

itself a predicted field, and is a function of total SWE in the snowpack, a temperature and 

SWE-dependent compaction scheme, and air temperature whenever snowfall is active 

(Koren et al. 1999).  

 

(b) Satellite-derived snow observations 

Satellite-based snow detection algorithms can be divided into two general categories: 

those that attempt a direct measurement of SWE and those that produce estimates of 
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SCA.  SWE algorithms take advantage of the fact that the diameter of snow grains falls 

within the same size range as microwave radiation (Chang et al. 1987; Chang et al. 2005).  

This means that snow scatters microwaves of different wavelengths with widely differing 

efficiency, and that the difference in scattering between two or more microwave channels 

can be used to estimate SWE.  Algorithms founded on this principle have been used to 

retrieve SWE from SSM/I, AMSR-E and other passive microwave sensors.  All such 

algorithms, however, are plagued by the fact that microwave scattering is sensitive to 

snow grain size, phase changes within the snowpack, and the presence of liquid water on 

the snow surface.  While there has been considerable progress on the theory of SWE 

retrieval from passive microwave sensors (e.g., Durand and Margulis 2006), these data 

products are not yet ready for practical use in DA (Andreadis and Lettenmaier 2006), 

particularly in global applications (Cordisco et al. 2006).       

 

Detecting the presence or absence of snow is a simpler problem for remote sensing, and 

several sensors currently offer acceptably accurate estimates of SCA over the globe 

(Bitner et al. 2002; Brubaker et al. 2005).  With respect to the two general goals of 

assimilating observations of snow—to improve representation of (a) the surface energy 

balance and (b) snow water reserves—the assimilation of estimated SCA offers the 

potential to improve a in all regions of the globe and b only in locations with partial or 

sporadic snow cover, or areas where there is substantial model error in the timing of the 

initiation and final melt of the seasonal snow pack.  This expectation follows from 

analyses of in situ snow observing stations, which show strong correlations between SCA 
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and SWE during periods of accumulation and ablation, but weak correlations in the 

middle of the snow season, when SCA nears 100% in a snowy region (Gong et al. 2007). 

 

SCA can be retrieved by passive microwave sensors, such as SSMI and AMSR-E, that 

provide measurements under both clear and cloudy conditions but have coarse spatial 

resolution (25km or more), and by sensors that use the visible and near-infrared (VNIR) 

portion of the spectrum.  VNIR sensors cannot penetrate clouds, but they offer superior 

spatial resolution.  MODIS, for example, can detect snow presence/absence at 500m 

resolution, which is more than adequate for most climate and many hydrological 

applications.  MODIS was selected for this study on account of its high spatial resolution 

and general reliability.  It is our expectation that DA routines can effectively interpolate 

between discontinuous measurements in time and space, but that it is more difficult to 

disaggregate a spatially coarse measurement or to extract useful information from an 

error-prone observation.  Since our goal is to design an assimilation scheme that can be 

applied globally but also at resolutions finer than 25 km, MODIS was identified as the 

best available data source. 

 

(c) Data assimilation 

The guiding principle of DA is that an observation and a prediction can be combined 

such that the result contains less uncertainty than either input.  Here, the predictions are 

provided by a physically-based numerical model of land surface processes.  The model 

contributes a high resolution, spatially and temporally continuous first-guess 

approximation of the assimilated state (in this case, snow water equivalent), based on 
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numerical representations of physical processes and other relevant data.  The 

observations provide an external check on model predictions, preventing drift and 

correcting the model with respect to essential state variables.  Hence the data assimilation 

scheme enables both scientific understanding and observations to inform estimates of a 

given variable, as well as associated states and fluxes, while addressing the spatial and 

temporal limitations of the observing system.  

 

The assimilation of a SCA observation presents some challenge because it provides only 

partial information on the model field that it is used to inform.  A SCA observation 

contains no information on snow depth, snow density, or snow water equivalent, which 

will all be influenced by the assimilation update, and the physical link between SCA and 

these variables is inconsistent in space and time.  An early season snowfall, for example, 

might coat 100% of the observation footprint with a very thin layer of snow, while 

springtime melt might leave behind deep piles of dense snow that cover only 30% of the 

footprint.   

 

The relationship between SCA and SWE at a given location can be described using a 

contextual snow depletion curve (SDC), which relates SCA to SWE on the basis of prior 

information and ground measurements (e.g., Anderson 1973).  Ideally, such a 

geographically-specific SDC is informed by local data on typical patterns of snow depth 

distribution (e.g., Andreadis and Lettenmaier 2006; Kolberg et al. 2006).  As such data 

are not available globally, Liston (2004) proposed a dichotomous key that divides the 

world into nine SDC landscapes, allowing for some refinement to globally uniform SDCs 
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in the absence of local data.  The key lacks the local specificity and spatial resolution of 

some regionally-specific SDCs, but it was shown to have a significant impact on the 

simulation of snow processes in a regional model.  The Subgrid Snow Distribution 

(SSNOWD) model derived from this key could be implemented within the framework of 

many existing LSMs. 

 

Another approach to SCA assimilation is to map SCA observations onto predicted 

variables in the LSM on the basis of cross-state covariance estimates.  Andreadis & 

Lettenmaier (2006) applied an Ensemble Kalman Filter (EnKF) assimilation scheme that 

used SCA observations to directly update SWE, while Clark et al. (2006) demonstrated a 

more extensive EnKF scheme that mapped SCA observations to update SWE, soil 

moisture, and groundwater.  Both studies showed promise in a watershed-scale, but the 

requirement for reliable cross-state covariance estimates and statistically robust 

observation error estimates currently preclude global application of the techniques (Clark 

et al. 2006).   

 

Acknowledging the information deficit encountered by both regionally-specific SDC 

assimilation schemes and EnKF routines, RH04 proposed a simple, conservative rule-

based assimilation scheme to link SCA observations to SWE.  In their assimilation of 

MODIS SCA into the Mosaic LSM they implemented a rule in which a thin layer of 

SWE (5 mm) was applied to any model grid cell for which MODIS reported SCA was > 

0.4 and the LSM had no snow cover.  For cells with MODIS SCA < 0.1, all snow was 

removed from the grid cell.  This simple approach can be applied globally with 
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reasonable confidence, and it requires no modification to the basic routines of the LSM.  

As our goal is a globally-applicable assimilation routine that can be applied to existing, 

operational versions of the Noah LSM, we use the RH04 algorithm as the starting point 

for the algorithm developed in this study. 

 

The RH04 algorithm, like most SCA assimilation methods, suffers from the inherent 

sensitivity of a snow update to any inconsistencies that might exist between the SCA 

observation and forcing fields of air temperature and precipitation.  This leads to two 

problems.  First, SCA assimilation tends to be much more effective at removing snow 

than adding snow.  This is because model errors that increase SCA are the product of 

episodic snowfall events, and these events can be quickly counter-acted by a single snow 

free observation.  Snow melt, on the other hand, can occur continuously as a function of 

air temperature.  The assimilation of a SCA observation that adds SWE to a grid cell is 

subject to immediate melt if air temperature is above the freezing point.  If added snow 

cover is melted away before the next observation becomes available then a primary goal 

of SCA assimilation—to correct SCA and surface albedo, preventing errors in surface 

energy fluxes to the atmosphere—is compromised, and, if it happens day after day (an 

"add/melt cycle"), soil moisture and runoff are unduly amplified.  In RH04 this problem 

was observed at a few isolated points, but on the whole assimilation was effective, in 

large part because the LSM used in that study, Mosaic, suffered from over-accumulation 

rather than under-accumulation of snow.  For an LSM such as Noah, which is prone to 

underestimating snow, the problem of preventing inaccurate snow melt is more critical.   
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The second, related difficulty in updating snow fields in an LSM is that most assimilation 

schemes upset the water budget without consideration for the underlying errors in the 

simulated precipitation and melt processes.  Such introduced imbalances can compound 

over time and manifest themselves as soil moisture and runoff biases.  As mentioned 

above, the advanced DA schemes capable of simultaneously updating all snow-related 

hydrological states at once (e.g., Clark et al. 2006) are not yet ready for global 

applications. 

 

In an effort to mitigate hydrologic imbalance caused by simply adding or removing snow, 

we present a novel assimilation algorithm that utilizes MODIS observations from up to 

72 hours ahead of simulation time.  These "future" data are used to nudge the forcing air 

temperature and, when necessary, precipitation towards likely precursors of the observed 

SCA.  When it is successful, this approach minimizes disruption of the local water 

balance and provides a smooth simulation of snow pack as informed by MODIS 

observations.  We feel that the use of SCA observations to nudge forcing data is justified 

by the reliability of MODIS observations.  Furthermore, the actual impact on forcing 

fields typically is small: snow accumulation and melt are sensitive to small changes in air 

temperature in the range of 0˚C, so it is rarely necessary to alter forcing air temperature 

by more than a few degrees C.  In a coupled simulation the modification would not 

directly affect the atmospheric model, as air temperature within the LSM is not 

communicated back to the atmosphere.  The modification of air temperature could 

indirectly affect atmospheric processes, via its influence on surface energy fluxes, but 
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that influence was found to be modest relative to the energetic impacts of snow cover 

itself (see Section 4).  Modification of the precipitation forcing  

 

 In concept, this algorithm bears some resemblance to the EnKF update presented by 

Clark et al. (2006), in which snow accumulation and melt were used to update SWE 

indirectly on the basis of a SCA observation, and soil moisture and groundwater were 

updated statistically on the basis of locally-determined coefficients of variation. Beyond 

this the methods diverge, as our scheme employs model physics rather than statistical 

relationships to update hydrological fields.  This avoids the need for detailed local cross-

state covariance estimates, allowing for global applications.   

 

3. Methods 

(a) MODIS data 

This study made use of the daily, 0.05˚-resolution MODIS climate-modeling grid-level-3 

product (MOD10C1), which is based on 500-m Terra/MODIS observations (Hall et al. 

2002). MOD10C1 specifies the fraction of each 0.05˚ grid cell that was observed to be 

snow covered, the fraction that was cloud covered, and the fraction (known as the 

‘‘confidence index’’) in which the land surface was visible (i.e., not obscured by clouds, 

night, or other interference), at the time of the satellite overpass (approximately 10:00 

A.M. local time).  The MOD10C1 product has been evaluated extensively against 

independent satellite and ground-based datasets, and it has shown good agreement (Bitner 

et al. 2002; Maurer et al. 2003). 
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Following RH04, the reliability of a MODIS snow cover observation within a given grid 

square was determined using the MOD10C1 confidence index.  MODIS is not cloud-

penetrating, but clouds are often pervasive where snow exists, so it is essential to make 

prudent use of data from grid squares that are partially cloud covered, lest useful 

information be neglected.  Taking this reasoning into account and based on a visual 

assessment of the credibility of the observed snow cover state at varying levels of the 

confidence index, it was decided that 6% is the minimum visibility for which a 0.25˚ 

aggregation of observations is useful. This parameter can easily be adjusted if a more 

appropriate value is later identified.  For 0.25˚ tiles that achieved this confidence 

threshold, the percentage of visible, snow-covered 500-m pixels is divided by the 

confidence index to establish the fraction of ground-visible (cloud free) pixels that were 

snow covered at the time of the MODIS observation.   

 

The relatively coarse spatial resolution of 0.25˚ was selected in order to accomplish 

lengthy global simulations, but MODIS would allow the application of the same 

algorithm at significantly higher resolution.  Recently, Salomonsson and Appel (2004) 

have extracted fractional SCA from MODIS at 500m resolution.  High resolution 

assimilation experiments using this product are the subject of current investigation. 

 

(b) Assimilation procedure 

The Noah LSM (version 2.7.1) was implemented for global, uncoupled simulations at 

0.25˚ resolution for the periods September 2005 – June 2006 and September 2006 – June 

2007.  Experiments were initialized using Global Land Data Assimilation System 
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(GLDAS) Noah restart fields from a multi-decadal simulation parameterized and forced 

by a hybrid dataset (Rodell et al. 2004).  Three-hourly atmospheric analyses from the 

Global Data Assimilation System (GDAS), the operational atmospheric DA system of 

NCEP (Derber et al. 1991), forced the experimental simulations.  GDAS runs on a 

thinned Gaussian grid, with a resolution of about 0.47˚.  The CPC’s operational 2.5˚ 5-

day Merged Analysis of Precipitation (CMAP) was used to bias-correct the higher 

resolution GDAS precipitation fields (Rodell et al. 2004).  CMAP estimates are based on 

a blending of satellite data (microwave and IR) and gauge observations (Xie and Arkin 

1997).   

 

All Noah simulations were performed using the NASA Goddard Space Flight Center 

(GSFC) Land Information System (LIS) version 5.0.  LIS is a software framework that 

supports the integration of observational data with coupled or uncoupled LSMs using a 

range of DA techniques (Kumar et al. 2006).  Implementation of the assimilation 

algorithm within LIS allows for simulations with a number of different atmospheric 

forcing data sets and for application to coupled land-atmosphere modeling systems.  The 

LIS framework also facilitates transfer of the assimilation scheme to forthcoming 

versions of Noah or to other, similar LSMs.  In LIS-Noah, subgrid variability is captured 

by simulating each major land cover class within the grid cell as an independent, 1-D 

"tile".  Gridded output is returned as the area-weighted sum of tiles within a grid cell 

(Rodell et al. 2004).   
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As discussed in Section 1, two assimilation procedures were utilized in this study, the 

push and pull algorithms (Figure 1).  The push algorithm consists of a single update 

routine, invoked once daily for each LSM tile.  It is largely analogous to the scheme used 

in RH04, slightly modified for Noah's snow routines. 

 

[push]: At 10:00 AM local time, Noah SCA is checked against the present MODIS 

observation.  At this time, if Noah differs from MODIS (LSMSCA ≠ OBSSCA) then: 

a. If MODIS SCA > 0.5 and Noah SCA < 0.2, Eq. 1 is inverted in order to 

calculate the minimum depth of SWE that must be added to the tile to 

bring Noah into agreement with MODIS.  This quantity is added directly 

to SWE.  Snow depth is also updated, on the basis of added SWE and 

Noah’s snow density routine for incoming snowfall.   

b. For MODIS SCA < 0.2 and Noah SCA > 0.5, Noah, Eq. 1 is inverted and 

Noah SWE is replaced with the value indicated by MODIS.   

These thresholds were chosen based on the properties of the MODIS observation.  The 

MODIS SCA product reports a “bird’s eye” view of snow cover rather than an estimate 

of actual snow cover on the ground (as is produced by most microwave-based snow cover 

products).  This means that in areas with tall vegetation or steep topography, MODIS 

frequently reports SCA below 100% even when the ground below canopy is completely 

snow covered.  For this reason we take a conservative approach, removing snow only 

when MODIS SCA is particularly low (< 20%) and, in adding snow, only adding to 

nearly snow-free tiles for which MODIS reports considerable (>50%) snow cover.  For 

all other tiles, we accept that LSMSCA ≈ OBSSCA and do not update the model.  The push 
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algorithm differs from that of RH04 in that the volume of SWE added/removed is 

determined by inverting the internal Noah snow depletion curve, rather than set as a 

constant for the entire simulation.  Use of the SDC allows for land use specificity in the 

assimilation update and allows us to apply the update as a continuous function of SCA.  

The Noah SDC is highly generalized, however, and is in no way equivalent to the 

detailed, geographically specific SDCs applied in watershed-scale studies (e.g., 

Andreadis and Lettenmaier 2006; Kolberg and Gottschalk 2006). 

 

The pull algorithm comprises two update routines, the first invoked for every tile at each 

LSM time step, and the second invoked only once daily for each tile. 

 

[pull]:  

(1) At each time step, the assimilation scheme checks the simulated SCA for the tile 

(calculated using Eq. 1) against the most proximal future MODIS SCA observation.  

This is the same-day MODIS observation when local time is 10:00 AM or earlier and 

it is the next-day MODIS observation when local time is later than 10:00 AM.  When 

the most proximal future observation is unavailable, the algorithm looks up to three 

days (72 hours) ahead to find a usable observation.  If current Noah SCA differs from 

the future MODIS observation, forcing is adjusted as follows: 

a. If MODIS SCA > 0.5 and Noah SCA < 0.2, forcing air temperature is set 

to -3˚C for the time step.  This inhibits melt and causes any incoming 

precipitation to be treated as snowfall. 
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b. If MODIS SCA < 0.2 and Noah SCA > 0.5, forcing air temperature is set 

to +3˚C.  This promotes melt and prevents the accumulation of any new 

snowfall. 

(2) Whenever local time is equal to 9:45AM—that is, the time step just prior to the 

time of MODIS observation—the precipitation field is modified directly: 

a. For MODIS SCA > 0.5 and Noah SCA < 0.2, if precipitation in the 

forcing dataset is insufficient to produce the MODIS-observed SCA by the 

end of the time step, the precipitation rate is increased to the minimum rate 

required to produce SCA that is consistent with MODIS.  Routine (1) 

guarantees that this added precipitation will fall as snow.  

b. For MODIS SCA < 0.2 and Noah SCA > 0.5, the remaining snowpack is 

forcibly melted, with melt water converted to soil moisture and, if the soil 

saturates, to surface runoff.    

All modifications to the forcing fields are recorded throughout the simulation in order to 

track the impact of assimilation on simulated air temperature and precipitation.  

Modifications to forcing imposed through assimilation are relevant only to the LSM, and 

not to any coupled atmospheric model; in coupled simulations, precipitation and air 

temperature are inputs to the LSM that are not reported back to the atmosphere.  The 

modifications will, however, influence surface fluxes of energy and water.  Effects on 

these variables are presented in Section 4.  

 

Forcible melt of a recalcitrant snowpack (pull step 2b) was included in the algorithm 

because Noah determines the available energy for snowmelt as a function of both air 
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temperature and soil surface temperature (Koren et al. 1999).   In locations where the 

LSM has erroneously generated a deep snow pack, the insulating properties of the snow 

inhibit melt from the top.  This difficulty in melting a thick snow pack from the top is 

inherent to the one-layer snow model in Noah 2.7.1, and would be of less concern for 

LSMs that contain multiple layer snow models.  In practice, however, rule 2b was rarely 

invoked in the global 0.25˚ Noah simulations reported in this paper.  

 

(c) Evaluation data 

Model predictions of SCA and SWE were evaluated using ground-based observations 

wherever possible.  For the United States, snow depth observations were provided by the 

National Weather Service Co-operative observer program (Co-op).  The Co-op network 

does not provide direct measurements of SWE, but it is nonetheless preferable to other 

snow observation networks (SNOTEL, for example), both because it offers extensive 

coverage over the United States and because it is not specifically designed as a snow 

observation network.  Observation stations designed for snow monitoring are 

intentionally sited in high altitude locations with deep snow accumulation, as these are 

the areas of greatest relevance for most snow studies.  Since SCA updating is most 

effective in areas that have marginal snow cover or an ephemeral seasonal snow pack, 

Co-op stations, which are distributed randomly with respect to snow accumulation zones, 

are a better source of evaluation data.  Snow water equivalent was estimated as 8.0% of 

observed depth at Co-op stations, representing an average for the dynamic range of snow 

density in the Noah LSM.   
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For locations outside of the United States, observations of snow depth were extracted 

from the National Climatic Data Center’s Global Summary of the Day (GSOD) dataset.  

As with Co-op stations, GSOD observations provide information on snow 

presence/absence and snow depth.  Unfortunately, many GSOD stations report snow 

observations only when snow depth is greater than zero.  It is still possible to evaluate the 

distribution of snow cover predicted in Noah simulations against the distribution reported 

by GSOD stations, but with the understanding that snow-free station locations are under-

represented.   

 

4. Results 

(a) SCA and SWE 

Over most regions of marginal snow cover, data assimilation using the push or pull 

algorithm led to an increase in total snow covered area relative to open loop simulations 

(Figure 2).  This included earlier onset of the snow season in Northern Europe and across 

most of North America, larger total extent of winter snow cover in the Western United 

States and Central Asia—but with markedly less winter snow in Tibet—and later spring 

melt for much of Canada and, with the exception of Tibet, Eurasia.   

 

Comparisons with in situ reports of snow presence/absence indicate that DA-informed 

simulations of snow cover were substantially more accurate than the open loop 

simulation.  For reporting Co-op stations in the contiguous United States, open loop 

simulations with Noah systematically under-estimated snow presence (Figure 3).  The 

assimilation of MODIS SCA observations corrected this bias, bringing the model into 
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better agreement with observations: for the winter of 2005-6 (Dec-Feb), 32% of all daily 

Co-op snow reports indicated that snow was present.  The open loop simulation had non-

zero snow at only 19% of the corresponding day-locations, while in the DA assimilations 

the average was 23% for push and 30% for pull.  Results were similar for the winter of 

2006-7: 40% for Co-op stations, 25% for open loop simulations, and 29% and 38%  for 

push and pull, respectively.   Data for regions outside of the United States are less 

complete, but they show a similar pattern.  In high latitude regions like Central Canada 

and Siberia, the positive impact of DA came primarily at the beginning and/or end of the 

snow season (Figure 3), while in mid-latitude regions with incomplete snow cover, 

improvements were seen throughout the winter (e.g., Mongolia, Figure 3).  In all cases, 

pull had a larger influence on Noah simulations than push, drawing the simulation into 

better agreement with available station data.  Unfortunately, station reports from Tibet 

were too limited to allow for a full station-based evaluation of DA results in this 

interesting region.  However, the general tendency of DA to produce patchy, rather than 

complete, snow cover for Tibet is consistent with the known character of snow cover on 

the Tibetan plateau, as established in field survey and independent remote sensing 

analyses (Qin et al. 2006).  MODIS SCA observations, for their part, have been validated 

for Tibet in a focused, regional-scale study (Pu et al. 2007), further increasing our 

confidence in DA results for the plateau.   

   

With respect to snow volume, DA had a positive influence on the simulation of SWE in 

regions with partial or transient snow cover, including the U.S. Southwest, where snow 

accumulation is significant only in elevated areas and shows strong inter-annual 
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variability, the U.S. High Plains, and the Mongolian Steppe (Figure 4).   Following the 

pattern observed for SCA, DA tended to increase SWE relative to open loop simulations 

in most regions.  In regions with deep seasonal snowpack, assimilation was only able to 

provide a marginal improvement in the simulation of SWE.  Such was the case for the 

United States “West Coast” focus region, which included the Sierra Nevada and Cascade 

ranges.  DA increased SCA in these ranges (see Figure 2), but was not able to improve 

model simulation of SWE significantly (Figure 4), because MODIS provides no 

information on snow mass or depth.   

 

(b) Hydrological fluxes 

As the SCA and SWE results indicate, the pull approach applied MODIS information 

more effectively than the push approach, primarily because it offset discrepancies 

between the satellite observation and atmospheric forcing data.  By nudging the 

atmospheric forcing into consistency with the MODIS observation, the algorithm updated 

snow fields in a more robust manner, reducing the incidence of daily add/melt cycles and 

related artifacts.  Thus pull maintained a local hydrological balance at all points 

throughout the simulation.  In contrast, the simple addition or removal of snow in the 

push simulation overwhelmed the water balance in certain locations. 

 

Figure 5 shows an example of this for a location in California where MODIS observed 

partial snow cover throughout the winter months, while open loop Noah simulations 

failed to capture any significant snow accumulation (Figure 5A).  Both the push and pull 

integrations effectively corrected the low snow bias, adding SWE to the simulation 
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(Figure 5B).  Push, however, accomplished this by the direct addition (removal) of snow 

to (from) the land surface, which caused non-physical imbalances in the local water 

balance (Figure 5C).  Pull maintained the local hydrological balance as effectively as 

open loop simulations by anticipating the presence of snow and reducing air temperature 

(Figure 5G).  The relatively modest reduction in air temperature was sufficient to change 

the phase of incoming precipitation to snow (Figure 5E) from rain (Figure 5F).  The 

physically consistent approach to snow updates also had an influence on snow melt 

(Figure 5H) and, by extension, runoff (Figure 5D) and soil moisture. 

 

Figure 6 demonstrates the advantages of pull for a location where DA had to remove 

snow from the model.  This was not nearly as common in the Noah simulations as it was 

in the RH04 Mosaic simulations, but it was necessary in some regions of Siberia where 

the onset of the snow season was premature in the open loop (see Figure 2).  At this 

particular location, MODIS observed a sporadic onset for the snow season, as snow cover 

was variable during the month of October (Figure 6A).  Air temperature hovered around 

freezing (Figure 6G), making the model prone to error in snowfall and melt processes.  

Both push and pull captured observed variability in snow cover, including a reduction in 

snow cover in the middle of the month (Figure 6B), but push did so by simply removing 

snow from the model, causing a hydrological imbalance (Figure 6C).  Pull maintained the 

local water balance.  Snow was removed by slightly raising air temperature (Figure 6G), 

leading to snow melt (Figure 6H).  
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The secondary pull add-snow procedure—increasing the local precipitation rate when air 

temperature modifications failed to produce an adequate snow cover—preserves the 

surface water balance at the expense of a possible precipitation bias.  That consequence 

should be examined closely in any application.  For the simulations performed in this 

study, the influence of pull on precipitation was substantial in some locations, but 

differences between pull and open loop precipitation were generally within the 

uncertainty level, i.e., the range of estimates from various global precipitation datasets.  

In fact, the pull algorithm often brought the open loop precipitation (disaggregated 

CMAP) into better agreement with alternative forcing datasets (Table 1).  One exception 

is for high latitude regions in the spring.  In these regions, the DA-induced addition of 

precipitation due to the pull algorithm did sometimes impose a wet bias beyond the range 

of common precipitation datasets.  This assimilation artifact reflects a limitation in the 

MODIS SCA data.  Because MODIS depends on visible and near infrared data to 

determine snow cover, the sensor cannot provide SCA estimates at high latitudes during 

winter.  During this extended data gap, the model has the opportunity to drift to lower 

SCA values (e.g., Figure 3, Central Canada).  When the MODIS record for these regions 

resumes in spring, a relatively large volume of snow must be added to the simulation in 

order to regain accurate snow cover.  To address this issue, we have begun to investigate 

the use of multisensor snow cover products (Helfrich et al. 2007; Romanov et al. 2003) 

that utilize high resolution visible/near-infrared observations whenever available but use 

microwave data to fill in data gaps at high latitudes.  It is anticipated that such 

multisensor products will correct for any artificial wet bias that pull produces at high 

latitudes.   



 25

 

Pull generally produced more realistic snow melt, soil moisture, and runoff than push.  

This was most obvious in locations where push repeatedly caused add/melt cycles over 

the course of the snow season (e.g., Figure 7).   These cycles resulted from 

inconsistencies between observation (SCA > 0.5) and atmospheric forcing (Tair > 0˚C).  

By making small adjustments to air temperature (Figure 7G), pull made it possible for the 

LSM to retain an applied positive snow increment, rather than melt it away (Figure 

7B,C,H).  Even under less dramatic circumstances, differences between pull and push can 

accumulate over the season to have a substantial impact on total snow melt, as well as the 

associated fields of soil moisture and runoff.   

 

 (c) Energy fluxes 

As expected, data assimilation had a substantial impact on the surface energy balance and 

on land-atmosphere energy fluxes.  Changes to SCA altered surface albedo, which in turn 

influenced radiative and turbulent fluxes.  These effects were most pronounced at mid-

latitudes during winter and at high latitudes in fall and spring, and were quite substantial 

for some regions.  In the US West, for example, DA increased snow covered area and 

albedo, causing a reduction in net radiation and sensible heat flux in winter (Table 2).  

The effects of the SCA update persisted into spring, when snow melt in the DA 

simulations led to increased soil moisture, enhanced latent heat flux, and slightly reduced 

surface temperature.  Despite more widespread snow cover in the pull simulation, soil 

moisture and latent heat flux were somewhat greater in the push simulation because of 

the add/melt cycles in the US West.  The influence of DA on energy fluxes was also 
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observed in mid-latitude Eurasia.  In Mongolia, DA produced simulations with increased 

wintertime SCA and albedo and substantially decreased net radiation and sensible heat 

flux.  The persistence of snow memory in the form of soil moisture was smaller in this 

region than it was in the US West. 

 

At high latitudes where winter snow cover was not ephemeral, DA had minimal impact 

on energy fluxes during winter, but it had substantial impacts in spring (Table 2: Central 

Canada and Siberia).   Both push and pull increased springtime snow cover and surface 

albedo in these regions, which in turn reduced net shortwave radiation at the surface.  

Outgoing longwave radiation also decreased, owing to reduced surface temperature.  The 

reduction in surface temperature was caused by increased snow cover and, in the case of 

the pull simulation, reduced air temperature.  Sensible heat flux diminished relative to 

open loop due to the combined effects of reduced net surface radiation and enhanced 

latent heat flux.   

 

These results demonstrate the value of SCA observations for coupled land-atmosphere 

simulations.  They also allay a concern associated with the pull algorithm: that 

manipulation of air temperature might lead to unrealistic radiation and energy fluxes.  For 

example, in locations where the pull algorithm reduces air temperature in order to 

increase SCA, it is possible that the enhanced surface-to-air temperature gradient might 

lead to increased surface sensible heat flux even though the addition of snow would be 

expected to reduce it.  In this application, it was found that pull imposed only small 

changes in the air temperature forcing field, and any influence that this had on turbulent 
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fluxes was small relative to the influence of improving the model’s representation of 

SCA.  This is clear from the fact that push and pull had similar influences on energy 

fluxes in all regions: increased SCA led to substantial reductions in sensible heat flux, 

and any mitigation of this due to enhanced surface to air temperature gradient in pull was 

negligible both in the monthly average (as shown in Table 2) and on daily and 3-hourly 

timescales.  Similarly, the influence of DA on radiative fluxes was dominated by the 

impact of SCA on surface properties rather than the influence of pull on atmospheric 

forcing fields.  Even in high latitude regions such as Central Canada, where pull reduced 

surface temperatures and net longwave radiation relative to push, the energetic 

differences between simulations is attributed to the fact that pull more effectively 

maintained snow cover, leading to larger values of SCA.  The direct manipulation of air 

temperature (Table 1) was small relative to simulated differences in surface temperature 

(Table 2), and would be expected to have the opposite influence on longwave radiation 

than was observed in the simulation: the magnitude of net outgoing longwave radiation at 

the surface was reduced in pull relative to other simulations, even though the 

manipulation of air temperature decreased incoming radiation, which would, on its own, 

have increased outgoing net radiation. 

 

5. Discussion 

The assimilation of MODIS SCA observations to the Noah LSM yielded improved 

estimates of snow cover in offline global simulations.  This had a substantial impact on 

the surface radiation balance, indicating that the technique would be of value in coupled 

land-atmosphere simulations.  Regions where assimilation had a large impact include the 
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western United States and Mongolia, in winter, and Siberia and Central Canada in spring.  

Both assimilation schemes tested in this paper—the rule-based push assimilation scheme 

and the pull assimilation scheme that updated air temperature and precipitation fields—

improved the simulation of SCA and SWE relative to open loop simulations.  Pull tended 

to produce more robust results, in large part because positive snow increments in push 

often melted away rapidly.  Any unintended influence that pull might have had on surface 

energy fluxes as a byproduct of air temperature manipulations was small compared to the 

effect of updating SCA.  Improved realism in the simulation of SCA and associated 

surface energy fluxes is important for retrospective climate analyses and, in the context of 

coupled models, for seasonal forecasts.  This is particularly true for regions like Siberia, 

where variability in SCA is known to have a significant impact on atmospheric 

circulations and climate throughout the northern hemisphere (Gong et al. 2003), and for 

mid-latitude regions such as the United States Great Plains, where snow influences 

springtime soil moisture and vegetation, both of which are involved in important land-

atmosphere feedbacks on climate (Koster et al. 2004).  The degree to which local 

improvements in the simulation of SCA lead to improved seasonal predictions on the 

regional scale will, of course, depend on the accuracy of model physics and 

parameterizations (Schlosser and Mocko 2003). 

 

With respect to hydrological variables, the benefits of data assimilation were more 

modest.  The assimilation of SCA is inherently limited in this regard, as most snow is 

stored in regions of deep snow, where SCA observations have little information to 

provide beyond the first few weeks and last few weeks of the snow season.  In evaluation 
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against snow depth measurements from available surface stations, data assimilation did 

appear to improve simulation of SWE in some regions.  Not surprisingly, these were 

regions of ephemeral snow cover, where SCA observations are most indicative of SWE.  

The pull algorithm caused a significant increase in precipitation, however, the CMAP-

based forcing data used in the experiments had a low bias compared with other 

precipitation products, and the resulting total precipitation in the pull simulation was 

somewhere between CMAP and the others.  Consequently, pull also tended to generate 

more runoff, latent heat flux, and soil moisture than open loop.  Push, in contrast, had 

mixed hydrological effects, as the net impact of add/melt and remove/accumulate cycles 

somewhat offset each other when averaged across focus regions.  These results could not 

be evaluated reliably against observations, owing to the many possible sources of biases 

in modeled runoff and soil moisture, and hence the difficulty determining an 

improvement or degradation.  

 

In high latitude regions the hydrological benefits of data assimilation were limited by the 

fact that MODIS cannot observe surface conditions without daylight or during periods of 

extended cloud cover. This problem will be mitigated by the use of multisensor snow 

cover products in future studies.  Nonetheless, MODIS observations alone do provide 

significant information for many snow-covered regions of the world. 

 

In summary, the shortcomings of existing snow cover assimilation schemes motivated the 

development of the new pull algorithm.  In particular, the algorithm overcomes a key 

limitation: in cases where the atmospheric forcing fields contradict the assimilated 
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observation, updates to SWE can be quickly nullified by subsequent snow melt or (less 

frequently) accumulation.  The new scheme compels the air temperature and precipitation 

to complement the near future SCA observation, thus preserving the update.  In our 

experimental simulation, this led to simulated SCA values that were higher than push and 

the open loop, and that were more consistent with ground based observations.  The  

second shortcoming we addressed was the tendency of assimilation schemes to disrupt 

the local water balance.  Pull inherently prevents hydrological imbalance and limits the 

add/melt and remove/accumulate cycles that produce undesirable artifacts in the 

simulated snow melt, soil moisture, and runoff fields.  Nevertheless, there is still room for 

improvement in the use of data assimilation to improve simulations of snow hydrology 

on the global scale.  More reliable satellite retrievals of SWE are needed to update snow 

fields in areas of 100% cover.  In the interim, the application of multisensor SCA 

products will fill gaps in the MODIS product, allowing for smoother and more complete 

updates in high latitude and cloud covered regions.    
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Tables 
 
Table 1: Precipitation and air temperature during the 2006-7 snow season (September 

2006 – May 2007) as reported by GDAS, CMAP, the NCEP-NCAR Reanalysis 
Project v2 and the TRMM 3B43 merged precipitation product (Huffman et al. 
2007) not available for high latitude regions), and as estimated in the Pull 
assimilation integration.  Data are shown for two regions in North America and 
two in Eurasia, as mapped on Figure 2.  All simulations in this paper used GDAS 
atmospheric forcing corrected with CMAP precipitation.  Thus, the combination 
of GDAS air temperature with CMAP precipitation is representative of forcing 
fields in the Open Loop and Push integrations.  The Pull fields of precipitation 
and air temperature represent the effects of the assimilation algorithm on a 
background of GDAS/CMAP forcing.   

 

GDAS CMAP NNRP TRMM Pull GDAS CMAP NNRP TRMM Pull
Oct 1.39 0.78 1.19 1.02 0.92 2.01 1.66 2.39 -- 1.90
Jan 0.73 0.33 1.07 1.14 0.58 0.87 0.59 0.79 -- 0.60
Apr 1.81 0.85 1.55 1.06 1.14 1.33 0.66 1.22 -- 1.66

Total 12.02 6.83 11.56 9.75 8.87 13.53 9.86 13.90 -- 11.46
Oct 280.7 -- 280.9 -- 280.2 274.1 -- 272.8 -- 273.5
Jan 267.6 -- 267.0 -- 267.7 257.4 -- 255.2 -- 257.5
Apr 280.0 -- 279.2 -- 279.4 271.2 -- 268.0 -- 270.1

Average 277.5 -- 277.2 -- 277.2 267.7 -- 265.9 -- 267.3

GDAS CMAP NNRP TRMM Pull GDAS CMAP NNRP TRMM Pull
Oct 0.25 0.22 0.23 0.28 0.31 1.42 0.99 1.31 -- 1.29
Jan 0.10 0.05 0.21 0.08 0.16 0.70 0.52 0.69 -- 0.58
Apr 0.38 0.25 0.57 0.29 0.35 1.33 0.48 2.42 -- 1.94

Total 2.41 1.86 2.85 2.27 2.71 11.76 7.22 10.69 -- 10.09
Oct 279.1 -- 276.6 -- 279.0 266.6 -- 264.6 -- 268.0
Jan 257.6 -- 254.9 -- 259.2 254.3 -- 253.4 -- 254.9
Apr 279.0 -- 276.9 -- 278.8 270.2 -- 286.2 -- 269.6

Average 272.3 -- 270.2 -- 272.9 262.3 -- 261.1 -- 262.7

Precip 
(mm/day)

Tair      
(K)

USWest C. Canada

Mongolia Siberia

Precip 
(mm/day)

Tair      
(K)
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Table 2: Snow, hydrology, and surface energy variables for the open loop, push, and pull 
simulations for October, January, and April of the 2006-7 snow season.  All 
values are monthly averages.  Gray shading indicates values that are referenced in 
the text.  SW = shortwave radiation, LW = longwave radiation, Rnet = net surface 
radation, H = sensible heat flux, λE = latent heat flux, SM = soil moisture, Q = 
total runoff. 

 
open push pull open push pull open push pull open push pull

Oct 0.01 0.02 0.04 0.16 0.21 0.30 0.01 0.03 0.04 0.38 0.38 0.42
Jan 0.27 0.36 0.53 0.99 0.98 0.99 0.33 0.42 0.52 0.98 0.97 0.98
Apr 0.02 0.03 0.05 0.38 0.43 0.58 0.02 0.02 0.03 0.40 0.46 0.63
Oct 0.20 0.21 0.21 0.21 0.23 0.25 0.24 0.25 0.26 0.27 0.27 0.28
Jan 0.29 0.32 0.38 0.46 0.46 0.46 0.39 0.43 0.48 0.42 0.41 0.42
Apr 0.19 0.19 0.20 0.28 0.29 0.33 0.23 0.23 0.23 0.26 0.28 0.32
Oct 126.4 125.7 125.1 63.9 62.8 61.4 121.9 120.6 119.7 59.6 58.9 57.9
Jan 79.5 74.7 67.9 21.4 21.5 21.3 55.1 50.9 46.8 13.4 13.5 13.4
Apr 194.8 193.5 192.2 138.7 135.5 128.6 207.5 207.3 206.3 141.0 137.3 128.8
Oct -87.3 -87.0 -84.4 -55.9 -55.4 -51.7 -97.2 -96.9 -96.0 -61.3 -60.6 -64.5
Jan -72.0 -70.9 -70.2 -44.8 -43.1 -44.8 -70.7 -69.8 -74.6 -45.0 -44.6 -46.7
Apr -91.9 -90.9 -87.2 -59.6 -58.0 -51.9 -108.0 -107.9 -106.7 -62.6 -61.3 -57.2
Oct 39.1 38.7 40.7 8.0 7.4 9.7 24.7 23.7 23.7 -1.7 -1.8 -6.6
Jan 7.4 3.8 -2.3 -23.4 -21.6 -23.4 -15.6 -18.9 -27.8 -31.7 -31.1 -33.3
Apr 102.9 102.6 105.0 79.1 77.5 76.7 99.6 99.4 99.6 78.4 76.0 71.6
Oct 281.4 281.4 280.8 274.1 274.0 273.2 278.6 278.5 278.3 266.4 266.2 267.1
Jan 267.3 267.1 266.9 256.6 256.1 256.5 255.7 255.5 256.6 252.2 252.1 252.7
Apr 282.2 282.0 281.4 272.6 272.2 271.0 280.2 280.2 280.0 271.8 271.5 270.6
Oct 34.0 32.7 35.8 7.8 6.1 10.3 26.3 24.6 25.2 7.2 6.2 0.6
Jan 13.3 8.8 5.2 -4.5 -8.4 -4.8 -6.2 -8.6 -14.2 -16.5 -17.3 -17.7
Apr 71.1 64.6 68.1 46.3 38.5 40.3 79.9 78.1 74.4 49.8 41.2 35.6
Oct 11.8 12.7 11.9 11.4 12.4 11.5 4.9 5.7 5.4 7.8 8.2 8.9
Jan 3.3 5.3 5.3 2.4 1.7 2.5 0.6 0.7 -0.2 -0.6 -0.7 -0.6
Apr 25.0 30.1 28.8 20.9 27.2 26.5 8.1 9.5 12.6 15.0 21.5 22.8
Oct 0.08 0.22 0.43 2.89 3.62 6.17 0.11 0.27 0.48 6.36 6.63 8.26
Jan 4.52 5.14 9.37 58.08 58.16 66.08 3.33 4.69 6.73 72.03 68.24 71.40
Apr 0.18 0.35 0.65 24.75 24.63 31.63 0.29 0.24 0.41 24.46 22.53 27.78
Oct 0.22 0.22 0.22 0.39 0.40 0.39 0.18 0.18 0.18 0.31 0.32 0.32
Jan 0.26 0.28 0.28 0.42 0.43 0.42 0.18 0.18 0.19 0.31 0.32 0.33
Apr 0.28 0.32 0.33 0.46 0.51 0.47 0.18 0.18 0.21 0.36 0.39 0.40
Oct 0.01 0.01 0.01 0.14 0.15 0.13 0.00 0.00 0.00 0.05 0.06 0.12
Jan 0.05 0.07 0.09 0.05 0.05 0.07 0.00 0.00 0.01 0.00 0.00 0.09
Apr 0.05 0.10 0.14 0.85 0.69 1.38 0.01 0.01 0.02 0.80 0.89 1.21

Q         
(mm/day)

Net LW 
(Wm-2)

SM   (m/m)

SiberiaC. Canada Mongolia

SWE    
(mm)

Tsurface      

(K)

λE        
(Wm-2)

USWest

SCA

Albedo

Net SW 
(Wm-2)

H        
(Wm-2)

Rnet       

(Wm-2)
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Figures  
 
Figure 1: General format of the two MODIS SCA assimilation algorithms used in the study. (A) 

A rule-based direct insertion algorithm (“Push”), in which observed SCA is used to 
update model SWE by inverting the snow depletion curve within the model to obtain an 
effective “Observed SWE” consistent with model parameters.  (B) a forcing 
modification algorithm (“Pull”) in which information from a future MODIS 
observation is used to nudge snow accumulation and melt processes within the model.  
This is accomplished by adjusting air temperature or, when that fails, ground 
temperature and precipitation. 

 
 

Read MODIS SCA obs for present day,
for all tiles where local time = 10:00AM

LSMSCA ≠ OBSSCA LSMSCA ≈ OBSSCALSMSCA ≈ OBSSCA

No ActionLSMSWE = “OBSSWE”

TIMESTEP

Initialize simulationInitialize simulation

TIMESTEP

A

 
 
 
 

Read  nearest
future MODIS SCA obs

LSMSCA ≠ OBSSCA LSMSCA ≈ OBSSCALSMSCA ≈ OBSSCA

No ActionModify Tair

TIMESTEP

LOCAL TIME 
≠ 9:45AM

LOCAL TIME  
= 9:45AM

LSMSCA < OBSSCALSMSCA < OBSSCA

Precip = “OBSSWE” – LSMSWE

TIMESTEP

Check Agreement

LSMSCA > OBSSCALSMSCA > OBSSCA

Raise Tsurface

B

Initialize simulationInitialize simulation
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Figure 3: Percent of stations reporting snow cover for Co-op sites in the contiguous US 
and GSOD sites in Central Canada, Mongolia, and Siberia, along with the percentage of 
those site locations that had snow cover in open loop, push and pull simulations. 
 

MongoliaMongolia

Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07

SiberiaSiberia

Contiguous USContiguous US

Central Canada

―Open
―Push
―Pull
• In situ

 



 43

Figure 4: Snow water equivalent, as predicted in Noah simulations and as estimated from 
snow depth reports at the locations of Co-op and (for Mongolia) GSOD observing 
stations.  Maps within each panel indicate the averaging region within the United States.  
The Mongolia averaging region is the same as that mapped in Figure 2.  N = number of 
stations used to calculate the average. 
 

Mongolia (n=32)Mongolia (n=32)

West Coast (n=59)West Coast (n=59)

Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07
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―Open
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• In situ

 



 44

 

Fi
gu

re
 5

: (
A

) M
O

D
IS

 a
nd

 O
pe

n 
Lo

op
 N

oa
h 

es
tim

at
es

 o
f S

C
A

 fo
r a

 si
m

ul
at

io
n 

gr
id

 b
ox

 in
cl

ud
in

g 
Sh

av
er

 L
ak

e,
 C

A
 (3

7.
2N

, 
11

9.
4W

). 
 (B

-H
) D

ai
ly

 o
pe

n 
lo

op
, p

us
h,

 a
nd

 p
ul

lv
al

ue
s o

f (
B

) S
W

E,
 (C

) l
oc

al
 w

at
er

 b
al

an
ce

, (
D

) a
cc

um
ul

at
ed

 ru
no

ff
, (

E)
 

ac
cu

m
ul

at
ed

 sn
ow

fa
ll,

 (F
) a

cc
um

ul
at

ed
 ra

in
fa

ll,
 (G

) a
ir 

te
m

pe
ra

tu
re

, a
nd

 (H
) d

ai
ly

 sn
ow

m
el

t f
or

 th
e 

sa
m

e 
lo

ca
tio

n.
  I

n 
pa

ne
l 

C
, t

he
 p

ul
ls

im
ul

at
io

n 
fa

lls
 d

ire
ct

ly
 o

n 
to

p 
of

 o
pe

n 
lo

op
.  

In
 p

an
el

s D
-F

, t
he

 p
us

h
si

m
ul

at
io

n 
is

 id
en

tic
al

 to
 o

pe
n 

lo
op

.

M
O

D
IS

O
pe

n 
Lo

op

O
pe

n 
Lo

op
Pu

sh
Pu

ll

HFE

DCBA

G

mmmmmm

mmmm mmK

SC
A

SW
E

W
at

er
 b

al
an

ce

R
un

of
f

R
ai

nf
al

l

Sn
ow

fa
ll

A
ir 

T

Sn
ow

m
el

t



 45

 
mmmmmm

mm mmKmm
HFE

DCBA

G

Fi
gu

re
 6

: A
s i

n 
Fi

gu
re

 5
, f

or
 a

 R
us

si
an

 S
ite

 n
ea

r L
en

sk
, 3

00
km

 N
 o

f L
ak

e 
B

ai
ka

l (
58

.7
N

, 1
08

.7
E)

M
O

D
IS

O
pe

n 
Lo

op

O
pe

n 
Lo

op
Pu

sh
Pu

ll

SC
A

SW
E

W
at

er
 b

al
an

ce

R
un

of
f

R
ai

nf
al

l

Sn
ow

fa
ll

A
ir 

T

Sn
ow

m
el

t



 46

  
 

mmmmmm

mm mmKmm
HFE

DCBA

G

Fi
gu

re
 7

: A
s i

n 
Fi

gu
re

 5
, f

or
 a

 lo
ca

tio
n 

ne
ar

 M
or

ia
rty

, N
ew

 M
ex

ic
o 

(3
5.

1N
, 1

05
.8

W
).

M
O

D
IS

O
pe

n 
Lo

op

O
pe

n 
Lo

op
Pu

sh
Pu

ll

SC
A

SW
E

W
at

er
 b

al
an

ce

R
un

of
f

R
ai

nf
al

l

Sn
ow

fa
ll

A
ir 

T

Sn
ow

m
el

t



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [3024.000 3024.000]
>> setpagedevice


